Social implications of biomedical research in Europe

Roger Bouillon MD, PhD (Leuven), FRCP (London)

Emeritus professor of medicine University of Leuven, Belgium

Member of the Koninklijke Academie voor Geneeskunde van België

Member of the Core Group of EMRC (ESF)

Honorary vice president for research University of Leuven

Board Member and Past president of the International Bone and mineral society

Advisory Board member of the Vitamin D workshop Inc

Advisor for Life science of the European Space Agency
Social implications of biomedical research in Europe

Example 1

Harald Zur Hausen

The Nobel Prize in Physiology or Medicine 2008

“for his discovery of human papilloma viruses causing cervical cancer“
Social implications of biomedical research in Europe
Social implications of biomedical research in Europe

Example 2

Longitivity

Thanks to Professor Steven Lamberts, emeritus rector magnificus of the Erasmus university of Rotterdam for providing the following slides
Female Life Expectancy from 1840 to the present, with the extrapolated trend

Horizontal lines represent asserted ceilings

Oeppen et al., Science, 2002
100 yo proband and his 70 yo offspring
Theories on Aging or Longitivity

1 Telomeres

2 DNA repair

3 Caloric restriction

4 Hormones:
 1 Sirtuins
 2 Insulin sensitivity
Theories on Aging or Longevity

1 Telomeres

2 DNA repair

3 Caloric restriction

4 Hormones:
 1 Sirtuins
 2 Insulin sensitivity
 e.g. Deletion of the growth hormone receptor
wild-type mice, giant bGH transgenic, dwarf GHA transgenic and dwarf GHR −/− gene disrupted mice in the same genetic background (C57BL/6 J). These mice represent normal, elevated, decreased and absent levels of GH action, respectively.
The Methuselah Mouse Prize (Prize M) is a competition prize for researchers who attempt to artificially lengthen the life of mice. The name of the prize is derived from the biblical figure Methuselah, who is storied to be the longest living men ever (969 years).

The price has been conceived and founded in 2003 by Aubrey de Grey.

Current longevity record

Currently (December 2011) the record is set at 1819 days (about five years) for genetically manipulated mice. The normal life expectancy for the (control) mouse strain used is around three years.
METHUSALEM MOUSE

The prospects of a long and healthy life are excellent

if you are a mouse in a good laboratory
Social implications of biomedical research in Europe

Example 3

a WESTERN DIET and the Metabolic Syndrome: SERENDIPITY FOR THE PREPARED MIND
Example 3

TISSUE SPECIFIC KO OF INSULIN RECEPTOR (and full insulin resistance) in

SKELETAL MUSCLE: NO METABOLIC SYNDROME
FAT: NO METABOLIC SYNDROME
BONE: OSTEOCYTES/OBL: FULL METABOLIC SYNDROME

BECAUSE BONE CELLS SECRETE HORMONE(S) THAT STIMULATE(S)
- INSULIN SECRETION OF BETA CELLS
- ADIPONECTIN SECRETION BY FAT CELLS, THEREBY IMPROVING INSULIN
SENSITIVITY WITH EVEN RISK OF SEVERE POSTNATAL HYPOGLYCEMIA (OR VICE
VERSÄ)

(BASED ON WORK FROM G. KARSEN'TY'S AND T. CLEMENTS' LABS)
Social implications of biomedical research in Europe

Example 4

NORMAL BODY MASS DESPITE WESTERN DIET:

SERENDIPITY FOR THE PREPARED MIND
VDR KO mice develop rickets as in children

But show strange metabolic consequences

Food intake of vdr ko MICE
VDR KO mice have a metabolic/energy phenotype (see figures)**

Transgenic expression of VDR in fat cells only generate OBESSE mice

** unpublished J Auwerx, K Schoonjans, R Bouillon
Social implications of biomedical research in Europe

Example 111111111111

THERE ARE MANY EXAMPLES OF MAJOR DISCOVERIES BY BLUE SKIES RESEARCH THAT HAVE A MAJOR SOCIETAL IMPACT
Ernst H. Starling to the British Research Council in 1924:

"Find the best of men, give them what equipment you can afford, and leave them alone"

(Discovery of the hormone together with Bayliss, the capillary diffusion & Starling’s heart law)
Public funding of health R&D in 13 EU countries and the US

EU13 (2006-08) 13,3

United States (2007) 28,7

In billion euros at 2007 PPP

Per capita: 25 € pp EU
82 € pp USA

Notes: EU13 includes Austria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Ireland, the Netherlands, Slovenia, Spain and the United Kingdom, using the latest annual OECD data available for the years 2006-2008. Before aggregation for the EU13, we use annual purchasing power parities (PPPs) to convert national expenditures of all EU countries into euros and the 2007 PPP to convert this aggregate into US-$, the currency used as the standard unit for international comparisons by the OECD. PPPs are conversion rates that both convert to a common currency and equalise the purchasing power of different currencies, thus eliminating differences in price levels between countries in the process of conversion. Given that price behaviour is different in different sectors, the OECD publishes specific PPPs for a number of different types of goods and services, but PPPs for the goods and services used in health-related R&D is not available. We therefore use PPPs for GDP, as they can be considered the most generic PPPs.
Social implications of biomedical research in Europe

We all consider health and thus also health care as top priority for our family, our friends and ourself.

And we are obliged or willing to pay for this aim (social security).

Health care expenditure = 10 % GDP and rapidly growing ~ 2500 € pp in EU!
EU FP7
(about 32 bn €)

Cooperation program: thematic areas (€32.4 billion)
European Framework Program: ~15 % is spend on biomedical research:

Shame on us, the biomedical scientists/ clinical scientists, that we tolerated that for so long

BUT SHOULD THAT NOT CHANGE AFTER TODAY???
World share of top 1% cited articles, by field 2003

* fractional counts of major S&E publishing centers

"Best Practice" missing gaps

Basic research

Translational research

Clinical research

This is a true bottleneck in many EU countries and certainly in EU perspective of need for international Clinical Trials which generate the greatest societal impact

Implementation research

Largely missing:
- e.g. lack of compliance for good therapies
- mysterious belief in “alternative therapies”

Interdisciplinary Research with SciTech and human sciences
Social implications of biomedical research in Europe:

Conclusions (1)

- biomedical/medical research had, has and will have major societal effects

- societal decisions will have a major impact on biomedical/medical research

- the present meeting and its decisions should have a long lasting impact in biomedical/medical/health care research
Social implications of biomedical research in Europe: Conclusions (2)

Biomedical/medical research in Europa shows signs of disease or frailty and needs a good diagnosis and adequate treatment plan.
Social implications of biomedical research in Europe

Conclusions (3)

Action plan?

TASK force for 10-20 year plan to diagnose, and find remedies AND implement the remedies for the biomedical/medical research gaps in Europe
Social implications of biomedical research in Europe

Conclusions (4)

Potential winners:
- Scientist
- Patients in EU and all over the world
- Industry would have a better and essential partner
- Tax payer: more efficient use of his €€€€€

= win-win-win-win situation
Bright sunny future for biomedical research
In Europa

Thank you!!!
Health (Care)

= top priority for most people

= expensive (≈ 10% GDP in EU and close to 20 % in USA)

= growth of costs >> growth GDP

= research = driving factor for
 - further improvement of care
 - optimal use of health care €/$
Social implications of biomedical research in Europe

A critical analysis revealed that about 25% of the present expenditure for health care is useless or worse in Belgium.

= example of incorrect implementation of what clinical scientist know best
Public funding of health R&D in 13 EU countries and the US

Notes: EU13 includes Austria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Ireland, the Netherlands, Slovenia, Spain and the United Kingdom, using the latest annual OECD data available for the years 2006-2008. Before aggregation for the EU13, we use annual purchasing power parities (PPPs) to convert national expenditures of all EU countries into euros and the 2007 PPP to convert this aggregate into US-$, the currency used as the standard unit for international comparisons by the OECD. PPPs are conversion rates that both convert to a common currency and equalise the purchasing power of different currencies, thus eliminating differences in price levels between countries in the process of conversion. Given that price behaviour is different in different sectors, the OECD publishes specific PPPs for a number of different types of goods and services, but PPPs for the goods and services used in health-related R&D is not available. We therefore use PPPs for GDP, as they can be considered the most generic PPPs.
A concerted and collaborative effort to strengthen and improve European medical research will have a positive impact for health and welfare in Europe and the rest of the world.
Recommandations for strengthening medical research in Europe

1. Best practice for funding and performing research
2. Collaboration
3. Revision of EC Directives
4. Equal opportunities for performing research
5. Doubling of public funding to 0.25 % of GDP
Solutions:

Adequate Research Funding &

Use of "Best Practice" in R&D
Medical research essential to cope with the future

In Europe and the rest of the world we are facing rapid changes in society with globalisation, new emerging and rapidly spreading infectious diseases, bioterrorism, changed disease patterns with treatment resistant tuberculosis, rapid and dramatic climate changes and -- in Europe – a changed demography with an Ageing population.
Social implications of biomedical research in Europe

Health care cost as percent of GDP

In most EU countries: ~10% and growing more rapidly than growth of GDP
(versus close to 20% in US)

What can biomedical research do to improve health and health care while keeping health care cost in control?
Social implications of biomedical research in Europe

Who wins from better biomedical research in Europe?

Scientists

Patients (= eventually all of us)

Health care industry

Tax payer with better and more efficient use of his health care €€€€